full site update

This commit is contained in:
2025-07-24 18:46:24 +02:00
parent bfe2b90d8d
commit 37a6e0ab31
6912 changed files with 540482 additions and 361712 deletions

19
node_modules/iron-webcrypto/dist/example.js generated vendored Normal file
View File

@@ -0,0 +1,19 @@
const { webcrypto } = require('node:crypto')
const Iron = require('iron-webcrypto')
const obj = {
a: 1,
b: 2,
c: [3, 4, 5],
d: {
e: 'f'
}
}
const password = 'a_password_having_at_least_32_chars'
const sealed = await Iron.seal(webcrypto, obj, password, Iron.defaults)
console.log({ sealed })
const unsealed = await Iron.unseal(webcrypto, sealed, password, Iron.defaults)
console.log({ unsealed })

315
node_modules/iron-webcrypto/dist/index.cjs generated vendored Normal file
View File

@@ -0,0 +1,315 @@
'use strict';
// src/utils.ts
var alphabetByEncoding = {};
var alphabetByValue = Array.from({ length: 64 });
for (let i = 0, start = "A".charCodeAt(0), limit = "Z".charCodeAt(0); i + start <= limit; i++) {
const char = String.fromCharCode(i + start);
alphabetByEncoding[char] = i;
alphabetByValue[i] = char;
}
for (let i = 0, start = "a".charCodeAt(0), limit = "z".charCodeAt(0); i + start <= limit; i++) {
const char = String.fromCharCode(i + start);
const index = i + 26;
alphabetByEncoding[char] = index;
alphabetByValue[index] = char;
}
for (let i = 0; i < 10; i++) {
alphabetByEncoding[i.toString(10)] = i + 52;
const char = i.toString(10);
const index = i + 52;
alphabetByEncoding[char] = index;
alphabetByValue[index] = char;
}
alphabetByEncoding["-"] = 62;
alphabetByValue[62] = "-";
alphabetByEncoding["_"] = 63;
alphabetByValue[63] = "_";
var bitsPerLetter = 6;
var bitsPerByte = 8;
var maxLetterValue = 63;
var stringToBuffer = (value) => {
return new TextEncoder().encode(value);
};
var bufferToString = (value) => {
return new TextDecoder().decode(value);
};
var base64urlDecode = (_input) => {
const input = _input + "=".repeat((4 - _input.length % 4) % 4);
let totalByteLength = input.length / 4 * 3;
if (input.endsWith("==")) {
totalByteLength -= 2;
} else if (input.endsWith("=")) {
totalByteLength--;
}
const out = new ArrayBuffer(totalByteLength);
const dataView = new DataView(out);
for (let i = 0; i < input.length; i += 4) {
let bits = 0;
let bitLength = 0;
for (let j = i, limit = i + 3; j <= limit; j++) {
if (input[j] === "=") {
bits >>= bitsPerLetter;
} else {
if (!(input[j] in alphabetByEncoding)) {
throw new TypeError(`Invalid character ${input[j]} in base64 string.`);
}
bits |= alphabetByEncoding[input[j]] << (limit - j) * bitsPerLetter;
bitLength += bitsPerLetter;
}
}
const chunkOffset = i / 4 * 3;
bits >>= bitLength % bitsPerByte;
const byteLength = Math.floor(bitLength / bitsPerByte);
for (let k = 0; k < byteLength; k++) {
const offset = (byteLength - k - 1) * bitsPerByte;
dataView.setUint8(chunkOffset + k, (bits & 255 << offset) >> offset);
}
}
return new Uint8Array(out);
};
var base64urlEncode = (_input) => {
const input = typeof _input === "string" ? stringToBuffer(_input) : _input;
let str = "";
for (let i = 0; i < input.length; i += 3) {
let bits = 0;
let bitLength = 0;
for (let j = i, limit = Math.min(i + 3, input.length); j < limit; j++) {
bits |= input[j] << (limit - j - 1) * bitsPerByte;
bitLength += bitsPerByte;
}
const bitClusterCount = Math.ceil(bitLength / bitsPerLetter);
bits <<= bitClusterCount * bitsPerLetter - bitLength;
for (let k = 1; k <= bitClusterCount; k++) {
const offset = (bitClusterCount - k) * bitsPerLetter;
str += alphabetByValue[(bits & maxLetterValue << offset) >> offset];
}
}
return str;
};
// src/index.ts
var defaults = {
encryption: { saltBits: 256, algorithm: "aes-256-cbc", iterations: 1, minPasswordlength: 32 },
integrity: { saltBits: 256, algorithm: "sha256", iterations: 1, minPasswordlength: 32 },
ttl: 0,
timestampSkewSec: 60,
localtimeOffsetMsec: 0
};
var clone = (options) => ({
...options,
encryption: { ...options.encryption },
integrity: { ...options.integrity }
});
var algorithms = {
"aes-128-ctr": { keyBits: 128, ivBits: 128, name: "AES-CTR" },
"aes-256-cbc": { keyBits: 256, ivBits: 128, name: "AES-CBC" },
sha256: { keyBits: 256, name: "SHA-256" }
};
var macFormatVersion = "2";
var macPrefix = "Fe26.2";
var randomBytes = (_crypto, size) => {
const bytes = new Uint8Array(size);
_crypto.getRandomValues(bytes);
return bytes;
};
var randomBits = (_crypto, bits) => {
if (bits < 1)
throw new Error("Invalid random bits count");
const bytes = Math.ceil(bits / 8);
return randomBytes(_crypto, bytes);
};
var pbkdf2 = async (_crypto, password, salt, iterations, keyLength, hash) => {
const passwordBuffer = stringToBuffer(password);
const importedKey = await _crypto.subtle.importKey(
"raw",
passwordBuffer,
{ name: "PBKDF2" },
false,
["deriveBits"]
);
const saltBuffer = stringToBuffer(salt);
const params = { name: "PBKDF2", hash, salt: saltBuffer, iterations };
const derivation = await _crypto.subtle.deriveBits(params, importedKey, keyLength * 8);
return derivation;
};
var generateKey = async (_crypto, password, options) => {
var _a;
if (!(password == null ? void 0 : password.length))
throw new Error("Empty password");
if (options == null || typeof options !== "object")
throw new Error("Bad options");
if (!(options.algorithm in algorithms))
throw new Error(`Unknown algorithm: ${options.algorithm}`);
const algorithm = algorithms[options.algorithm];
const result = {};
const hmac = (_a = options.hmac) != null ? _a : false;
const id = hmac ? { name: "HMAC", hash: algorithm.name } : { name: algorithm.name };
const usage = hmac ? ["sign", "verify"] : ["encrypt", "decrypt"];
if (typeof password === "string") {
if (password.length < options.minPasswordlength)
throw new Error(
`Password string too short (min ${options.minPasswordlength} characters required)`
);
let { salt = "" } = options;
if (!salt) {
const { saltBits = 0 } = options;
if (!saltBits)
throw new Error("Missing salt and saltBits options");
const randomSalt = randomBits(_crypto, saltBits);
salt = [...new Uint8Array(randomSalt)].map((x) => x.toString(16).padStart(2, "0")).join("");
}
const derivedKey = await pbkdf2(
_crypto,
password,
salt,
options.iterations,
algorithm.keyBits / 8,
"SHA-1"
);
const importedEncryptionKey = await _crypto.subtle.importKey(
"raw",
derivedKey,
id,
false,
usage
);
result.key = importedEncryptionKey;
result.salt = salt;
} else {
if (password.length < algorithm.keyBits / 8)
throw new Error("Key buffer (password) too small");
result.key = await _crypto.subtle.importKey("raw", password, id, false, usage);
result.salt = "";
}
if (options.iv)
result.iv = options.iv;
else if ("ivBits" in algorithm)
result.iv = randomBits(_crypto, algorithm.ivBits);
return result;
};
var getEncryptParams = (algorithm, key, data) => {
return [
algorithm === "aes-128-ctr" ? { name: "AES-CTR", counter: key.iv, length: 128 } : { name: "AES-CBC", iv: key.iv },
key.key,
typeof data === "string" ? stringToBuffer(data) : data
];
};
var encrypt = async (_crypto, password, options, data) => {
const key = await generateKey(_crypto, password, options);
const encrypted = await _crypto.subtle.encrypt(...getEncryptParams(options.algorithm, key, data));
return { encrypted: new Uint8Array(encrypted), key };
};
var decrypt = async (_crypto, password, options, data) => {
const key = await generateKey(_crypto, password, options);
const decrypted = await _crypto.subtle.decrypt(...getEncryptParams(options.algorithm, key, data));
return bufferToString(new Uint8Array(decrypted));
};
var hmacWithPassword = async (_crypto, password, options, data) => {
const key = await generateKey(_crypto, password, { ...options, hmac: true });
const textBuffer = stringToBuffer(data);
const signed = await _crypto.subtle.sign({ name: "HMAC" }, key.key, textBuffer);
const digest = base64urlEncode(new Uint8Array(signed));
return { digest, salt: key.salt };
};
var normalizePassword = (password) => {
if (typeof password === "string" || password instanceof Uint8Array)
return { encryption: password, integrity: password };
if ("secret" in password)
return { id: password.id, encryption: password.secret, integrity: password.secret };
return { id: password.id, encryption: password.encryption, integrity: password.integrity };
};
var seal = async (_crypto, object, password, options) => {
if (!password)
throw new Error("Empty password");
const opts = clone(options);
const now = Date.now() + (opts.localtimeOffsetMsec || 0);
const objectString = JSON.stringify(object);
const pass = normalizePassword(password);
const { id = "", encryption, integrity } = pass;
if (id && !/^\w+$/.test(id))
throw new Error("Invalid password id");
const { encrypted, key } = await encrypt(_crypto, encryption, opts.encryption, objectString);
const encryptedB64 = base64urlEncode(new Uint8Array(encrypted));
const iv = base64urlEncode(key.iv);
const expiration = opts.ttl ? now + opts.ttl : "";
const macBaseString = `${macPrefix}*${id}*${key.salt}*${iv}*${encryptedB64}*${expiration}`;
const mac = await hmacWithPassword(_crypto, integrity, opts.integrity, macBaseString);
const sealed = `${macBaseString}*${mac.salt}*${mac.digest}`;
return sealed;
};
var fixedTimeComparison = (a, b) => {
let mismatch = a.length === b.length ? 0 : 1;
if (mismatch)
b = a;
for (let i = 0; i < a.length; i += 1)
mismatch |= a.charCodeAt(i) ^ b.charCodeAt(i);
return mismatch === 0;
};
var unseal = async (_crypto, sealed, password, options) => {
if (!password)
throw new Error("Empty password");
const opts = clone(options);
const now = Date.now() + (opts.localtimeOffsetMsec || 0);
const parts = sealed.split("*");
if (parts.length !== 8)
throw new Error("Incorrect number of sealed components");
const prefix = parts[0];
let passwordId = parts[1];
const encryptionSalt = parts[2];
const encryptionIv = parts[3];
const encryptedB64 = parts[4];
const expiration = parts[5];
const hmacSalt = parts[6];
const hmac = parts[7];
const macBaseString = `${prefix}*${passwordId}*${encryptionSalt}*${encryptionIv}*${encryptedB64}*${expiration}`;
if (macPrefix !== prefix)
throw new Error("Wrong mac prefix");
if (expiration) {
if (!/^\d+$/.test(expiration))
throw new Error("Invalid expiration");
const exp = Number.parseInt(expiration, 10);
if (exp <= now - opts.timestampSkewSec * 1e3)
throw new Error("Expired seal");
}
let pass = "";
passwordId = passwordId || "default";
if (typeof password === "string" || password instanceof Uint8Array)
pass = password;
else if (passwordId in password) {
pass = password[passwordId];
} else {
throw new Error(`Cannot find password: ${passwordId}`);
}
pass = normalizePassword(pass);
const macOptions = opts.integrity;
macOptions.salt = hmacSalt;
const mac = await hmacWithPassword(_crypto, pass.integrity, macOptions, macBaseString);
if (!fixedTimeComparison(mac.digest, hmac))
throw new Error("Bad hmac value");
const encrypted = base64urlDecode(encryptedB64);
const decryptOptions = opts.encryption;
decryptOptions.salt = encryptionSalt;
decryptOptions.iv = base64urlDecode(encryptionIv);
const decrypted = await decrypt(_crypto, pass.encryption, decryptOptions, encrypted);
if (decrypted)
return JSON.parse(decrypted);
return null;
};
exports.algorithms = algorithms;
exports.base64urlDecode = base64urlDecode;
exports.base64urlEncode = base64urlEncode;
exports.bufferToString = bufferToString;
exports.clone = clone;
exports.decrypt = decrypt;
exports.defaults = defaults;
exports.encrypt = encrypt;
exports.generateKey = generateKey;
exports.hmacWithPassword = hmacWithPassword;
exports.macFormatVersion = macFormatVersion;
exports.macPrefix = macPrefix;
exports.randomBits = randomBits;
exports.seal = seal;
exports.stringToBuffer = stringToBuffer;
exports.unseal = unseal;

255
node_modules/iron-webcrypto/dist/index.d.cts generated vendored Normal file
View File

@@ -0,0 +1,255 @@
interface _Crypto {
readonly subtle: _SubtleCrypto;
getRandomValues: (array: Uint8Array) => Uint8Array;
}
interface _SubtleCrypto {
decrypt: (algorithm: AesCbcParams | AesCtrParams | AesGcmParams | AlgorithmIdentifier | RsaOaepParams, key: CryptoKey, data: Uint8Array) => Promise<ArrayBuffer>;
deriveBits: (algorithm: AlgorithmIdentifier | EcdhKeyDeriveParams | HkdfParams | Pbkdf2Params, baseKey: CryptoKey, length: number) => Promise<ArrayBuffer>;
encrypt: (algorithm: AesCbcParams | AesCtrParams | AesGcmParams | AlgorithmIdentifier | RsaOaepParams, key: CryptoKey, data: Uint8Array) => Promise<ArrayBuffer>;
importKey: (format: Exclude<KeyFormat, 'jwk'>, keyData: ArrayBuffer | Uint8Array, algorithm: AesKeyAlgorithm | AlgorithmIdentifier | EcKeyImportParams | HmacImportParams | RsaHashedImportParams, extractable: boolean, keyUsages: KeyUsage[]) => Promise<CryptoKey>;
sign: (algorithm: AlgorithmIdentifier | EcdsaParams | RsaPssParams, key: CryptoKey, data: Uint8Array) => Promise<ArrayBuffer>;
}
/**
* Algorithm used for encryption and decryption.
*/
type EncryptionAlgorithm = 'aes-128-ctr' | 'aes-256-cbc';
/**
* Algorithm used for integrity verification.
*/
type IntegrityAlgorithm = 'sha256';
/**
* @internal
*/
type _Algorithm = EncryptionAlgorithm | IntegrityAlgorithm;
/**
* seal() method options.
*/
interface SealOptionsSub<Algorithm extends _Algorithm = _Algorithm> {
/**
* The length of the salt (random buffer used to ensure that two identical objects will generate a different encrypted result). Defaults to 256.
*/
saltBits: number;
/**
* The algorithm used. Defaults to 'aes-256-cbc' for encryption and 'sha256' for integrity.
*/
algorithm: Algorithm;
/**
* The number of iterations used to derive a key from the password. Defaults to 1.
*/
iterations: number;
/**
* Minimum password size. Defaults to 32.
*/
minPasswordlength: number;
}
/**
* Options for customizing the key derivation algorithm used to generate encryption and integrity verification keys as well as the algorithms and salt sizes used.
*/
interface SealOptions {
/**
* Encryption step options.
*/
encryption: SealOptionsSub<EncryptionAlgorithm>;
/**
* Integrity step options.
*/
integrity: SealOptionsSub<IntegrityAlgorithm>;
/**
* Sealed object lifetime in milliseconds where 0 means forever. Defaults to 0.
*/
ttl: number;
/**
* Number of seconds of permitted clock skew for incoming expirations. Defaults to 60 seconds.
*/
timestampSkewSec: number;
/**
* Local clock time offset, expressed in number of milliseconds (positive or negative). Defaults to 0.
*/
localtimeOffsetMsec: number;
}
/**
* Password secret string or buffer.
*/
type Password = Uint8Array | string;
/**
* generateKey() method options.
*/
type GenerateKeyOptions<Algorithm extends _Algorithm = _Algorithm> = Pick<SealOptionsSub<Algorithm>, 'algorithm' | 'iterations' | 'minPasswordlength'> & {
saltBits?: number | undefined;
salt?: string | undefined;
iv?: Uint8Array | undefined;
hmac?: boolean | undefined;
};
/**
* Generated internal key object.
*/
interface Key {
key: CryptoKey;
salt: string;
iv: Uint8Array;
}
/**
* Generated HMAC internal results.
*/
interface HMacResult {
digest: string;
salt: string;
}
declare namespace password {
/**
* Secret object with optional id.
*/
interface Secret {
id?: string | undefined;
secret: Password;
}
/**
* Secret object with optional id and specified password for each encryption and integrity.
*/
interface Specific {
id?: string | undefined;
encryption: Password;
integrity: Password;
}
/**
* Key-value pairs hash of password id to value.
*/
type Hash = Record<string, Password | Secret | Specific>;
}
/**
* @internal
*/
type RawPassword = Password | password.Secret | password.Specific;
/**
* Convert a string to a Uint8Array.
* @param value The string to convert
* @returns The Uint8Array
*/
declare const stringToBuffer: (value: string) => Uint8Array;
/**
* Convert a Uint8Array to a string.
* @param value The Uint8Array to convert
* @returns The string
*/
declare const bufferToString: (value: Uint8Array) => string;
/**
* Decode a base64url string to a Uint8Array.
* @param _input The base64url string to decode (automatically padded as necessary)
* @returns The Uint8Array
*
* @see https://tools.ietf.org/html/rfc4648#section-5
*/
declare const base64urlDecode: (_input: string) => Uint8Array;
/**
* Encode a Uint8Array to a base64url string.
* @param _input The Uint8Array to encode
* @returns The base64url string (without padding)
*
* @see https://tools.ietf.org/html/rfc4648#section-5
*/
declare const base64urlEncode: (_input: Uint8Array | string) => string;
/**
* The default encryption and integrity settings.
*/
declare const defaults: SealOptions;
/**
* Clones the options object.
* @param options The options object to clone
* @returns A new options object
*/
declare const clone: (options: SealOptions) => SealOptions;
/**
* Configuration of each supported algorithm.
*/
declare const algorithms: {
readonly 'aes-128-ctr': {
readonly keyBits: 128;
readonly ivBits: 128;
readonly name: "AES-CTR";
};
readonly 'aes-256-cbc': {
readonly keyBits: 256;
readonly ivBits: 128;
readonly name: "AES-CBC";
};
readonly sha256: {
readonly keyBits: 256;
readonly name: "SHA-256";
};
};
/**
* MAC normalization format version.
*/
declare const macFormatVersion = "2";
/**
* MAC normalization prefix.
*/
declare const macPrefix = "Fe26.2";
/**
* Generate cryptographically strong pseudorandom bits.
* @param _crypto Custom WebCrypto implementation
* @param bits Number of bits to generate
* @returns Buffer
*/
declare const randomBits: (_crypto: _Crypto, bits: number) => Uint8Array;
/**
* Generates a key from the password.
* @param _crypto Custom WebCrypto implementation
* @param password A password string or buffer key
* @param options Object used to customize the key derivation algorithm
* @returns An object with keys: key, salt, iv
*/
declare const generateKey: (_crypto: _Crypto, password: Password, options: GenerateKeyOptions) => Promise<Key>;
/**
* Encrypts data.
* @param _crypto Custom WebCrypto implementation
* @param password A password string or buffer key
* @param options Object used to customize the key derivation algorithm
* @param data String to encrypt
* @returns An object with keys: encrypted, key
*/
declare const encrypt: (_crypto: _Crypto, password: Password, options: GenerateKeyOptions<EncryptionAlgorithm>, data: string) => Promise<{
encrypted: Uint8Array;
key: Key;
}>;
/**
* Decrypts data.
* @param _crypto Custom WebCrypto implementation
* @param password A password string or buffer key
* @param options Object used to customize the key derivation algorithm
* @param data Buffer to decrypt
* @returns Decrypted string
*/
declare const decrypt: (_crypto: _Crypto, password: Password, options: GenerateKeyOptions<EncryptionAlgorithm>, data: Uint8Array | string) => Promise<string>;
/**
* Calculates a HMAC digest.
* @param _crypto Custom WebCrypto implementation
* @param password A password string or buffer
* @param options Object used to customize the key derivation algorithm
* @param data String to calculate the HMAC over
* @returns An object with keys: digest, salt
*/
declare const hmacWithPassword: (_crypto: _Crypto, password: Password, options: GenerateKeyOptions<IntegrityAlgorithm>, data: string) => Promise<HMacResult>;
/**
* Serializes, encrypts, and signs objects into an iron protocol string.
* @param _crypto Custom WebCrypto implementation
* @param object Data being sealed
* @param password A string, buffer or object
* @param options Object used to customize the key derivation algorithm
* @returns Iron sealed string
*/
declare const seal: (_crypto: _Crypto, object: unknown, password: RawPassword, options: SealOptions) => Promise<string>;
/**
* Verifies, decrypts, and reconstruct an iron protocol string into an object.
* @param _crypto Custom WebCrypto implementation
* @param sealed The iron protocol string generated with seal()
* @param password A string, buffer, or object
* @param options Object used to customize the key derivation algorithm
* @returns The verified decrypted object (can be null)
*/
declare const unseal: (_crypto: _Crypto, sealed: string, password: Password | password.Hash, options: SealOptions) => Promise<unknown>;
export { type EncryptionAlgorithm, type GenerateKeyOptions, type HMacResult, type IntegrityAlgorithm, type Key, type Password, type RawPassword, type SealOptions, type SealOptionsSub, type _Algorithm, algorithms, base64urlDecode, base64urlEncode, bufferToString, clone, decrypt, defaults, encrypt, generateKey, hmacWithPassword, macFormatVersion, macPrefix, password, randomBits, seal, stringToBuffer, unseal };

255
node_modules/iron-webcrypto/dist/index.d.ts generated vendored Normal file
View File

@@ -0,0 +1,255 @@
interface _Crypto {
readonly subtle: _SubtleCrypto;
getRandomValues: (array: Uint8Array) => Uint8Array;
}
interface _SubtleCrypto {
decrypt: (algorithm: AesCbcParams | AesCtrParams | AesGcmParams | AlgorithmIdentifier | RsaOaepParams, key: CryptoKey, data: Uint8Array) => Promise<ArrayBuffer>;
deriveBits: (algorithm: AlgorithmIdentifier | EcdhKeyDeriveParams | HkdfParams | Pbkdf2Params, baseKey: CryptoKey, length: number) => Promise<ArrayBuffer>;
encrypt: (algorithm: AesCbcParams | AesCtrParams | AesGcmParams | AlgorithmIdentifier | RsaOaepParams, key: CryptoKey, data: Uint8Array) => Promise<ArrayBuffer>;
importKey: (format: Exclude<KeyFormat, 'jwk'>, keyData: ArrayBuffer | Uint8Array, algorithm: AesKeyAlgorithm | AlgorithmIdentifier | EcKeyImportParams | HmacImportParams | RsaHashedImportParams, extractable: boolean, keyUsages: KeyUsage[]) => Promise<CryptoKey>;
sign: (algorithm: AlgorithmIdentifier | EcdsaParams | RsaPssParams, key: CryptoKey, data: Uint8Array) => Promise<ArrayBuffer>;
}
/**
* Algorithm used for encryption and decryption.
*/
type EncryptionAlgorithm = 'aes-128-ctr' | 'aes-256-cbc';
/**
* Algorithm used for integrity verification.
*/
type IntegrityAlgorithm = 'sha256';
/**
* @internal
*/
type _Algorithm = EncryptionAlgorithm | IntegrityAlgorithm;
/**
* seal() method options.
*/
interface SealOptionsSub<Algorithm extends _Algorithm = _Algorithm> {
/**
* The length of the salt (random buffer used to ensure that two identical objects will generate a different encrypted result). Defaults to 256.
*/
saltBits: number;
/**
* The algorithm used. Defaults to 'aes-256-cbc' for encryption and 'sha256' for integrity.
*/
algorithm: Algorithm;
/**
* The number of iterations used to derive a key from the password. Defaults to 1.
*/
iterations: number;
/**
* Minimum password size. Defaults to 32.
*/
minPasswordlength: number;
}
/**
* Options for customizing the key derivation algorithm used to generate encryption and integrity verification keys as well as the algorithms and salt sizes used.
*/
interface SealOptions {
/**
* Encryption step options.
*/
encryption: SealOptionsSub<EncryptionAlgorithm>;
/**
* Integrity step options.
*/
integrity: SealOptionsSub<IntegrityAlgorithm>;
/**
* Sealed object lifetime in milliseconds where 0 means forever. Defaults to 0.
*/
ttl: number;
/**
* Number of seconds of permitted clock skew for incoming expirations. Defaults to 60 seconds.
*/
timestampSkewSec: number;
/**
* Local clock time offset, expressed in number of milliseconds (positive or negative). Defaults to 0.
*/
localtimeOffsetMsec: number;
}
/**
* Password secret string or buffer.
*/
type Password = Uint8Array | string;
/**
* generateKey() method options.
*/
type GenerateKeyOptions<Algorithm extends _Algorithm = _Algorithm> = Pick<SealOptionsSub<Algorithm>, 'algorithm' | 'iterations' | 'minPasswordlength'> & {
saltBits?: number | undefined;
salt?: string | undefined;
iv?: Uint8Array | undefined;
hmac?: boolean | undefined;
};
/**
* Generated internal key object.
*/
interface Key {
key: CryptoKey;
salt: string;
iv: Uint8Array;
}
/**
* Generated HMAC internal results.
*/
interface HMacResult {
digest: string;
salt: string;
}
declare namespace password {
/**
* Secret object with optional id.
*/
interface Secret {
id?: string | undefined;
secret: Password;
}
/**
* Secret object with optional id and specified password for each encryption and integrity.
*/
interface Specific {
id?: string | undefined;
encryption: Password;
integrity: Password;
}
/**
* Key-value pairs hash of password id to value.
*/
type Hash = Record<string, Password | Secret | Specific>;
}
/**
* @internal
*/
type RawPassword = Password | password.Secret | password.Specific;
/**
* Convert a string to a Uint8Array.
* @param value The string to convert
* @returns The Uint8Array
*/
declare const stringToBuffer: (value: string) => Uint8Array;
/**
* Convert a Uint8Array to a string.
* @param value The Uint8Array to convert
* @returns The string
*/
declare const bufferToString: (value: Uint8Array) => string;
/**
* Decode a base64url string to a Uint8Array.
* @param _input The base64url string to decode (automatically padded as necessary)
* @returns The Uint8Array
*
* @see https://tools.ietf.org/html/rfc4648#section-5
*/
declare const base64urlDecode: (_input: string) => Uint8Array;
/**
* Encode a Uint8Array to a base64url string.
* @param _input The Uint8Array to encode
* @returns The base64url string (without padding)
*
* @see https://tools.ietf.org/html/rfc4648#section-5
*/
declare const base64urlEncode: (_input: Uint8Array | string) => string;
/**
* The default encryption and integrity settings.
*/
declare const defaults: SealOptions;
/**
* Clones the options object.
* @param options The options object to clone
* @returns A new options object
*/
declare const clone: (options: SealOptions) => SealOptions;
/**
* Configuration of each supported algorithm.
*/
declare const algorithms: {
readonly 'aes-128-ctr': {
readonly keyBits: 128;
readonly ivBits: 128;
readonly name: "AES-CTR";
};
readonly 'aes-256-cbc': {
readonly keyBits: 256;
readonly ivBits: 128;
readonly name: "AES-CBC";
};
readonly sha256: {
readonly keyBits: 256;
readonly name: "SHA-256";
};
};
/**
* MAC normalization format version.
*/
declare const macFormatVersion = "2";
/**
* MAC normalization prefix.
*/
declare const macPrefix = "Fe26.2";
/**
* Generate cryptographically strong pseudorandom bits.
* @param _crypto Custom WebCrypto implementation
* @param bits Number of bits to generate
* @returns Buffer
*/
declare const randomBits: (_crypto: _Crypto, bits: number) => Uint8Array;
/**
* Generates a key from the password.
* @param _crypto Custom WebCrypto implementation
* @param password A password string or buffer key
* @param options Object used to customize the key derivation algorithm
* @returns An object with keys: key, salt, iv
*/
declare const generateKey: (_crypto: _Crypto, password: Password, options: GenerateKeyOptions) => Promise<Key>;
/**
* Encrypts data.
* @param _crypto Custom WebCrypto implementation
* @param password A password string or buffer key
* @param options Object used to customize the key derivation algorithm
* @param data String to encrypt
* @returns An object with keys: encrypted, key
*/
declare const encrypt: (_crypto: _Crypto, password: Password, options: GenerateKeyOptions<EncryptionAlgorithm>, data: string) => Promise<{
encrypted: Uint8Array;
key: Key;
}>;
/**
* Decrypts data.
* @param _crypto Custom WebCrypto implementation
* @param password A password string or buffer key
* @param options Object used to customize the key derivation algorithm
* @param data Buffer to decrypt
* @returns Decrypted string
*/
declare const decrypt: (_crypto: _Crypto, password: Password, options: GenerateKeyOptions<EncryptionAlgorithm>, data: Uint8Array | string) => Promise<string>;
/**
* Calculates a HMAC digest.
* @param _crypto Custom WebCrypto implementation
* @param password A password string or buffer
* @param options Object used to customize the key derivation algorithm
* @param data String to calculate the HMAC over
* @returns An object with keys: digest, salt
*/
declare const hmacWithPassword: (_crypto: _Crypto, password: Password, options: GenerateKeyOptions<IntegrityAlgorithm>, data: string) => Promise<HMacResult>;
/**
* Serializes, encrypts, and signs objects into an iron protocol string.
* @param _crypto Custom WebCrypto implementation
* @param object Data being sealed
* @param password A string, buffer or object
* @param options Object used to customize the key derivation algorithm
* @returns Iron sealed string
*/
declare const seal: (_crypto: _Crypto, object: unknown, password: RawPassword, options: SealOptions) => Promise<string>;
/**
* Verifies, decrypts, and reconstruct an iron protocol string into an object.
* @param _crypto Custom WebCrypto implementation
* @param sealed The iron protocol string generated with seal()
* @param password A string, buffer, or object
* @param options Object used to customize the key derivation algorithm
* @returns The verified decrypted object (can be null)
*/
declare const unseal: (_crypto: _Crypto, sealed: string, password: Password | password.Hash, options: SealOptions) => Promise<unknown>;
export { type EncryptionAlgorithm, type GenerateKeyOptions, type HMacResult, type IntegrityAlgorithm, type Key, type Password, type RawPassword, type SealOptions, type SealOptionsSub, type _Algorithm, algorithms, base64urlDecode, base64urlEncode, bufferToString, clone, decrypt, defaults, encrypt, generateKey, hmacWithPassword, macFormatVersion, macPrefix, password, randomBits, seal, stringToBuffer, unseal };

298
node_modules/iron-webcrypto/dist/index.js generated vendored Normal file
View File

@@ -0,0 +1,298 @@
// src/utils.ts
var alphabetByEncoding = {};
var alphabetByValue = Array.from({ length: 64 });
for (let i = 0, start = "A".charCodeAt(0), limit = "Z".charCodeAt(0); i + start <= limit; i++) {
const char = String.fromCharCode(i + start);
alphabetByEncoding[char] = i;
alphabetByValue[i] = char;
}
for (let i = 0, start = "a".charCodeAt(0), limit = "z".charCodeAt(0); i + start <= limit; i++) {
const char = String.fromCharCode(i + start);
const index = i + 26;
alphabetByEncoding[char] = index;
alphabetByValue[index] = char;
}
for (let i = 0; i < 10; i++) {
alphabetByEncoding[i.toString(10)] = i + 52;
const char = i.toString(10);
const index = i + 52;
alphabetByEncoding[char] = index;
alphabetByValue[index] = char;
}
alphabetByEncoding["-"] = 62;
alphabetByValue[62] = "-";
alphabetByEncoding["_"] = 63;
alphabetByValue[63] = "_";
var bitsPerLetter = 6;
var bitsPerByte = 8;
var maxLetterValue = 63;
var stringToBuffer = (value) => {
return new TextEncoder().encode(value);
};
var bufferToString = (value) => {
return new TextDecoder().decode(value);
};
var base64urlDecode = (_input) => {
const input = _input + "=".repeat((4 - _input.length % 4) % 4);
let totalByteLength = input.length / 4 * 3;
if (input.endsWith("==")) {
totalByteLength -= 2;
} else if (input.endsWith("=")) {
totalByteLength--;
}
const out = new ArrayBuffer(totalByteLength);
const dataView = new DataView(out);
for (let i = 0; i < input.length; i += 4) {
let bits = 0;
let bitLength = 0;
for (let j = i, limit = i + 3; j <= limit; j++) {
if (input[j] === "=") {
bits >>= bitsPerLetter;
} else {
if (!(input[j] in alphabetByEncoding)) {
throw new TypeError(`Invalid character ${input[j]} in base64 string.`);
}
bits |= alphabetByEncoding[input[j]] << (limit - j) * bitsPerLetter;
bitLength += bitsPerLetter;
}
}
const chunkOffset = i / 4 * 3;
bits >>= bitLength % bitsPerByte;
const byteLength = Math.floor(bitLength / bitsPerByte);
for (let k = 0; k < byteLength; k++) {
const offset = (byteLength - k - 1) * bitsPerByte;
dataView.setUint8(chunkOffset + k, (bits & 255 << offset) >> offset);
}
}
return new Uint8Array(out);
};
var base64urlEncode = (_input) => {
const input = typeof _input === "string" ? stringToBuffer(_input) : _input;
let str = "";
for (let i = 0; i < input.length; i += 3) {
let bits = 0;
let bitLength = 0;
for (let j = i, limit = Math.min(i + 3, input.length); j < limit; j++) {
bits |= input[j] << (limit - j - 1) * bitsPerByte;
bitLength += bitsPerByte;
}
const bitClusterCount = Math.ceil(bitLength / bitsPerLetter);
bits <<= bitClusterCount * bitsPerLetter - bitLength;
for (let k = 1; k <= bitClusterCount; k++) {
const offset = (bitClusterCount - k) * bitsPerLetter;
str += alphabetByValue[(bits & maxLetterValue << offset) >> offset];
}
}
return str;
};
// src/index.ts
var defaults = {
encryption: { saltBits: 256, algorithm: "aes-256-cbc", iterations: 1, minPasswordlength: 32 },
integrity: { saltBits: 256, algorithm: "sha256", iterations: 1, minPasswordlength: 32 },
ttl: 0,
timestampSkewSec: 60,
localtimeOffsetMsec: 0
};
var clone = (options) => ({
...options,
encryption: { ...options.encryption },
integrity: { ...options.integrity }
});
var algorithms = {
"aes-128-ctr": { keyBits: 128, ivBits: 128, name: "AES-CTR" },
"aes-256-cbc": { keyBits: 256, ivBits: 128, name: "AES-CBC" },
sha256: { keyBits: 256, name: "SHA-256" }
};
var macFormatVersion = "2";
var macPrefix = "Fe26.2";
var randomBytes = (_crypto, size) => {
const bytes = new Uint8Array(size);
_crypto.getRandomValues(bytes);
return bytes;
};
var randomBits = (_crypto, bits) => {
if (bits < 1)
throw new Error("Invalid random bits count");
const bytes = Math.ceil(bits / 8);
return randomBytes(_crypto, bytes);
};
var pbkdf2 = async (_crypto, password, salt, iterations, keyLength, hash) => {
const passwordBuffer = stringToBuffer(password);
const importedKey = await _crypto.subtle.importKey(
"raw",
passwordBuffer,
{ name: "PBKDF2" },
false,
["deriveBits"]
);
const saltBuffer = stringToBuffer(salt);
const params = { name: "PBKDF2", hash, salt: saltBuffer, iterations };
const derivation = await _crypto.subtle.deriveBits(params, importedKey, keyLength * 8);
return derivation;
};
var generateKey = async (_crypto, password, options) => {
var _a;
if (!(password == null ? void 0 : password.length))
throw new Error("Empty password");
if (options == null || typeof options !== "object")
throw new Error("Bad options");
if (!(options.algorithm in algorithms))
throw new Error(`Unknown algorithm: ${options.algorithm}`);
const algorithm = algorithms[options.algorithm];
const result = {};
const hmac = (_a = options.hmac) != null ? _a : false;
const id = hmac ? { name: "HMAC", hash: algorithm.name } : { name: algorithm.name };
const usage = hmac ? ["sign", "verify"] : ["encrypt", "decrypt"];
if (typeof password === "string") {
if (password.length < options.minPasswordlength)
throw new Error(
`Password string too short (min ${options.minPasswordlength} characters required)`
);
let { salt = "" } = options;
if (!salt) {
const { saltBits = 0 } = options;
if (!saltBits)
throw new Error("Missing salt and saltBits options");
const randomSalt = randomBits(_crypto, saltBits);
salt = [...new Uint8Array(randomSalt)].map((x) => x.toString(16).padStart(2, "0")).join("");
}
const derivedKey = await pbkdf2(
_crypto,
password,
salt,
options.iterations,
algorithm.keyBits / 8,
"SHA-1"
);
const importedEncryptionKey = await _crypto.subtle.importKey(
"raw",
derivedKey,
id,
false,
usage
);
result.key = importedEncryptionKey;
result.salt = salt;
} else {
if (password.length < algorithm.keyBits / 8)
throw new Error("Key buffer (password) too small");
result.key = await _crypto.subtle.importKey("raw", password, id, false, usage);
result.salt = "";
}
if (options.iv)
result.iv = options.iv;
else if ("ivBits" in algorithm)
result.iv = randomBits(_crypto, algorithm.ivBits);
return result;
};
var getEncryptParams = (algorithm, key, data) => {
return [
algorithm === "aes-128-ctr" ? { name: "AES-CTR", counter: key.iv, length: 128 } : { name: "AES-CBC", iv: key.iv },
key.key,
typeof data === "string" ? stringToBuffer(data) : data
];
};
var encrypt = async (_crypto, password, options, data) => {
const key = await generateKey(_crypto, password, options);
const encrypted = await _crypto.subtle.encrypt(...getEncryptParams(options.algorithm, key, data));
return { encrypted: new Uint8Array(encrypted), key };
};
var decrypt = async (_crypto, password, options, data) => {
const key = await generateKey(_crypto, password, options);
const decrypted = await _crypto.subtle.decrypt(...getEncryptParams(options.algorithm, key, data));
return bufferToString(new Uint8Array(decrypted));
};
var hmacWithPassword = async (_crypto, password, options, data) => {
const key = await generateKey(_crypto, password, { ...options, hmac: true });
const textBuffer = stringToBuffer(data);
const signed = await _crypto.subtle.sign({ name: "HMAC" }, key.key, textBuffer);
const digest = base64urlEncode(new Uint8Array(signed));
return { digest, salt: key.salt };
};
var normalizePassword = (password) => {
if (typeof password === "string" || password instanceof Uint8Array)
return { encryption: password, integrity: password };
if ("secret" in password)
return { id: password.id, encryption: password.secret, integrity: password.secret };
return { id: password.id, encryption: password.encryption, integrity: password.integrity };
};
var seal = async (_crypto, object, password, options) => {
if (!password)
throw new Error("Empty password");
const opts = clone(options);
const now = Date.now() + (opts.localtimeOffsetMsec || 0);
const objectString = JSON.stringify(object);
const pass = normalizePassword(password);
const { id = "", encryption, integrity } = pass;
if (id && !/^\w+$/.test(id))
throw new Error("Invalid password id");
const { encrypted, key } = await encrypt(_crypto, encryption, opts.encryption, objectString);
const encryptedB64 = base64urlEncode(new Uint8Array(encrypted));
const iv = base64urlEncode(key.iv);
const expiration = opts.ttl ? now + opts.ttl : "";
const macBaseString = `${macPrefix}*${id}*${key.salt}*${iv}*${encryptedB64}*${expiration}`;
const mac = await hmacWithPassword(_crypto, integrity, opts.integrity, macBaseString);
const sealed = `${macBaseString}*${mac.salt}*${mac.digest}`;
return sealed;
};
var fixedTimeComparison = (a, b) => {
let mismatch = a.length === b.length ? 0 : 1;
if (mismatch)
b = a;
for (let i = 0; i < a.length; i += 1)
mismatch |= a.charCodeAt(i) ^ b.charCodeAt(i);
return mismatch === 0;
};
var unseal = async (_crypto, sealed, password, options) => {
if (!password)
throw new Error("Empty password");
const opts = clone(options);
const now = Date.now() + (opts.localtimeOffsetMsec || 0);
const parts = sealed.split("*");
if (parts.length !== 8)
throw new Error("Incorrect number of sealed components");
const prefix = parts[0];
let passwordId = parts[1];
const encryptionSalt = parts[2];
const encryptionIv = parts[3];
const encryptedB64 = parts[4];
const expiration = parts[5];
const hmacSalt = parts[6];
const hmac = parts[7];
const macBaseString = `${prefix}*${passwordId}*${encryptionSalt}*${encryptionIv}*${encryptedB64}*${expiration}`;
if (macPrefix !== prefix)
throw new Error("Wrong mac prefix");
if (expiration) {
if (!/^\d+$/.test(expiration))
throw new Error("Invalid expiration");
const exp = Number.parseInt(expiration, 10);
if (exp <= now - opts.timestampSkewSec * 1e3)
throw new Error("Expired seal");
}
let pass = "";
passwordId = passwordId || "default";
if (typeof password === "string" || password instanceof Uint8Array)
pass = password;
else if (passwordId in password) {
pass = password[passwordId];
} else {
throw new Error(`Cannot find password: ${passwordId}`);
}
pass = normalizePassword(pass);
const macOptions = opts.integrity;
macOptions.salt = hmacSalt;
const mac = await hmacWithPassword(_crypto, pass.integrity, macOptions, macBaseString);
if (!fixedTimeComparison(mac.digest, hmac))
throw new Error("Bad hmac value");
const encrypted = base64urlDecode(encryptedB64);
const decryptOptions = opts.encryption;
decryptOptions.salt = encryptionSalt;
decryptOptions.iv = base64urlDecode(encryptionIv);
const decrypted = await decrypt(_crypto, pass.encryption, decryptOptions, encrypted);
if (decrypted)
return JSON.parse(decrypted);
return null;
};
export { algorithms, base64urlDecode, base64urlEncode, bufferToString, clone, decrypt, defaults, encrypt, generateKey, hmacWithPassword, macFormatVersion, macPrefix, randomBits, seal, stringToBuffer, unseal };